skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rebel, Karin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. A wide range of research shows that nutrient availability strongly influences terrestrial carbon (C) cycling and shapes ecosystem responses to environmental changes and hence terrestrial feedbacks to climate. Nonetheless, our understanding of nutrient controls remains far from complete and poorly quantified, at least partly due to a lack of informative, comparable, and accessible datasets at regional-to-global scales. A growing research infrastructure of multi-site networks are providing valuable data on C fluxes and stocks and are monitoring their responses to global environmental change and measuring responses to experimental treatments. These networks thus provide an opportunity for improving our understanding of C-nutrient cycle interactions and our ability to model them. However, coherent information on how nutrient cycling interacts with observed C cycle patterns is still generally lacking. Here, we argue that complementing available C-cycle measurements from monitoring and experimental sites with data characterizing nutrient availability will greatly enhance their power and will improve our capacity to forecast future trajectories of terrestrial C cycling and climate. Therefore, we propose a set of complementary measurements that are relatively easy to conduct routinely at any site or experiment and that, in combination with C cycle observations, can provide a robust characterization of the effects of nutrient availability across sites. In addition, we discuss the power of different observable variables for informing the formulation of models and constraining their predictions. Most widely available measurements of nutrient availability often do not align well with current modelling needs. This highlights the importance to foster the interaction between the empirical and modelling communities for setting future research priorities. 
    more » « less